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Abstract  
 
       Virtual testing of composite materials is, compared to a conventional 
experimental analysis, less time consuming, and it can very clearly reveal the failure 
mode. Therefore, it can be used for an optimization of the shape and amount of 
aggregates. Unlike the basic analytical homogenization methods, numerical 
modeling can predict the strength of the material and energy needed for the crack 
propagation. In our study three-point bending and splitting tests, by means of 2D 
plane-stress nonlinear finite element analysis utilizing isotropic damage model, were 
simulated. There were two types of aggregates investigated by the study - sand and 
crushed bricks. The sand particles were considered as round, angular or having the 
shape of ellipsoids, while the crushed brick particles were only of an angular shape. 
The results of the analysis indicate that angular aggregates of bigger size contribute 
to an increased fracture energy of the mortars, while the mortars containing fine 
round aggregates exhibit higher strength due to absence of stress concentrations 
around the grains. When the sand particles are replaced by much more compliant 
crushed brick particles, the mortar is able to sustain much bigger deformation within 
the elastic region. 
 
Keywords:  FEM, damage model, mortar, three point bending test, splitting test, crushed 

bricks, fracture energy 
 
 
 

Abstrakt  
 
       Virtuální testování s vyuţitím numerických metod, v porovnání s konvenční 
experimentální analýzou, vyţaduje mnohem méně času a přesto je schopné nám 
přesně odhalit mechanismus poškození. Proto můţe být snadno pouţit pro 
optimalizaci tvaru a mnoţství kameniva. Na rozdíl od základních analytických 
homogenizačních metod, můţe numerické modelování předpovědět pevnost 
materiálu a energii potřebnou ke vzniku a šíření trhliny. Naše testy - tří bodový ohyb 
a test rozštěpení, byly virtuálně prováděny nelineárním výpočtem pomocí 2D 
rovinné napjatosti  metodou konečných prvků vyuţivající izotropický model 
poškoţení. Testovány byly dva druhy plniva – písek a drcené cihly. Výsledky 
analýzy ukazují, ţe ostrohranné kamenivo větších velikostí  přispívá ke zvýšení 
lomové energie malt, zatímco malty obsahující jemné kulové tvary kameniva 
vykazují vyšší pevnost v důsledku sníţení koncentrace napětí kolem zrn. Pouţití 
drcených cihel, jako plniva místo písku, má za následek větší mezní elastickou 
deformaci. 
 
Klíčová slova: MKP, model poškození, malty, tříbodový ohyb, štěpení klínem, 

drcená cihla, lomová energie 
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INTRODUCTION  8 

Introduction 

       It has been observed by many [1, 2] that the material properties of mortars and 
concrete are dependent on the amount, type and geometry of aggregates in the mix. 
The first purpose of this work is to investigate the influence of the aggregate shape 
and size on the mechanical properties of mortars, composed of sand aggregates and a 
brittle matrix. Namely, the influence of aggregates on flexural strength of the tested 
mortar was determined from a three-point bending test simulations, while the 
fracture energy was evaluated from simulations of a splitting test.  
       The second purpose is to investigate the role of crushed bricks particles within 
the mortar under the mechanical loading. Lime-based mortars were widely used in 
ancient times and they find they use nowadays for the purposes of cultural heritage 
restoration. These mortars were traditionally composed of air-slaked lime, pozzolans 
and sand aggregates. Phoenicians were probably the first ones to add also the 
fragments of crushed bricks or pottery into their mortars [3] and the technology was 
later adopted by the Romans who used these mortars especially in baths and 
aqueducts. One reason could have been to increase the hydraulicity of the mortars 
[2], but the hydraulic reactions on the lime-crushed brick interface is relatively weak 
to significantly enhance the mechanical properties. Namely, numerous simulations of 
three-point bending and splitting tests were carried out, in order to investigate the 
fracture mechanical properties of the samples, stress concentrations around various 
aggregate types and to observe the failure mechanism. Computationally less 
demanding analytical homogenization methods used e.g. in [4] for an investigation 
of mortars containing crushed brick particles cannot reveal the failure and post-peak 
behavior. 
       The first part of this work provides a theoretical background of the FE 
calculations, non-linear material behavior and basics of theory of elasticity. In the 
second part the tested specimens are described with all steps of the calculations, and 
the results are presented and discussed.  
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Goals 

       The main goal of this thesis is to learn basics principles of FE calculations used in 
a practice of civil engineer. In particular, the main goals of the thesis are to:  
 

 study the historical evolution of FEM leading to numerical simulations used in 
FE nowadays 

 study the principles of FEM 

 study the non-linear behavior of composite materials 

 study the damage model for the needs of simulations 

 investigate the influence of shape of the sand particles on fracture properties 

 investigate the influence of crushed bricks used instead of sand aggregates on 
the fracture properties  



 

PART I: 

THEORETICAL 

BACKGROUND 
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1 Finite Element Method 

       The finite element method (FEM) is one of the most important numerical methods 
for solving physical phenomena in encountered engineering nowadays. In particular, 
it is widely used if the phenomena or their parts can be described by partial 
differential equations, since solving these equations by classical analytical methods 
for arbitrary shapes is impossible. However, the finite element method is a numerical 
approach by which the partial differential equations can be solved approximately.  

1.1 Historical Background 

       The origins of FEM can be traced back to the first half of the 20th century. 
Mathematicians discovered in 1943 paper by R. Courant (1943), in which he used 
triangular elements with variational principles to solve vibration problems. Many 
mathematicians say that it was the discovery of the method. Other important persons 
who have  significantly contributed to develop the method were: M. J. Turner,  
R. W. Clough, E. L. Wilson, K. J. Bathe, J. H. Argyris, T. Belytschko, O. Zienkiewicz.  
In the first years, FEM lacked theoretical basis and many engineers did not believe, 
that results provided by FEM can give the right solution.  
       In the late 1960s, field of interest around FEM rose up rapidly; Edward L. Wilson 
developed one of the first FEM computing program. This program was marked as 
"freeware" in today's terminology, which was very common in the early 1960's, 
because there were not any commercial interests from the beginning.  
The program could work only with two-dimensional stress analysis, and it was used 
by many academic groups and industrial laboratories to demonstrate the power and 
versatility of finite elements. 
       Later on, in 1965, NASA funded a project to develop a program for  
general-purpose finite element analysis. The program was known as NASTRAN. 
It should be noted that in 1965-1980 there was The Third Generation of operating 
systems. Despite its enormous size and problems, OS/360 and similar third-
generation operating systems were sufficient for the needs of computing [5]. 
NASTRAN was developed for the needs of aeronautics. It was able to work e.g. with 
two- and three-dimensional stress analysis, shell and beam elements, it could analyze 
complex structures, such as airframes, or analysis of dynamics problems. First 
version was intended for public use, but unfortunately it had many bugs [6]. After 
the completion of the program and debugging, the program was marketed to the 
industry. In 1990, the program was the workhorse of most large industrial firms and 
a $100 million worth business. 
       At nearly the same time, a finite element program at Westinghouse Electronics 
Corp, primarily used for the analysis of nuclear reactors, was developed. In 1969 it 
was released to market and called ANSYS. The program had both - linear and 
nonlinear options, and it was soon widely use in many companies. In 1996 ANSYS 
went public and in 2006 it was worth $1.8 billion. 
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       Another, and probably the last important representative of FEM programs is 
ABAQUS. ABAQUS was developed by a company called HKS, which was founded 
in 1978. The program was focused on nonlinear analysis from the beginning, but 
later the linear capabilities were also added. This program was widely used by 
researchers because HKS introduced gateways to the program core, so that users 
could add own new material models and elements. In 2005, the company was sold 
for $413 milion [6].  
       Many non-commercial software have been also developed, providing the users 
with sourcefiles, but offering minimum graphical interface. These programs, such as 
OOFEM [7], find their place mainly in research. 

1.2 State of Art 

       FEM is absolutely indispensable in today's world. It isn't used only in the 
aeronautics industry like in the early 60's. Nowadays, we are not limited by the 
computational power and more sophisticated models can be done. Usage of FEM is 
too wide to list, here are a few examples to provide a clue about its versatility: 
 stress and thermal analyses of industrial parts such as pipes, electronics chips, 

automotive engines and aircraft; 
 seismic analysis of dams, power plants, cities and high-rise buildings; 
 dynamics problems - in civil engineering and other branches of industry; 
 fluid flow analysis, determining the flow of pollutants and contaminants, and 

air in ventilation systems; 
 electromagnetic analysis of antennas, transistors and aircraft signatures;  
 analysis of surgical procedures such as plastics surgery, jaw reconstruction 

and many others. 
However, this is a very short brief and new areas of application are constantly 
emerging. This thesis is focused on the usage of FEM in structural mechanics. 

1.2.1 Present Software Packages 

       In present (2013) there are many software packages on the market. List below 
shows the most used software packages. The list is sorted according to their use. 
 
 Universal - ANSYS, MSC.Nastran, MSC.Narc, ABAQUS, Adina, Cosmos/M, 

Systus, OOFEM, ... 
 Specialized - MSC.Superform, MSC.Superforge, Antares, Sysweld, Franc3D, 

PAM Stamp, PAM Crash, ... 
 pre and post processors - Hyperworks, MSC.Patran, Femap, Ensight, ... 
 integrated in CAD systems - I-DEAS, Catia, Pro/E, Autodesk Inventor, 

Autodesk Revit, ...  
 
This is one point of view. The second can be divided into categories according to the 
license. There are two major categories of software packages: 
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 Free/Open source - OOFEM, FEBio, Code Aster, CalculiX, ... 
 Commercial - ANSYS, ABAQUS, ADINA, LS-DYNA, ... 

 
Reader can find the full list here [8].  

1.3 Principle of FEM 

       The finite element method was developed as a matrix method of structural 
analysis. Firstly, it was used for trusses and frames, we call them discrete structures. 
Later it was extended for continuum structures.  
       FEM method is based on conventional theory of elasticity (force equilibrium and 
compatibility of displacements), variational principles, and energy theorems. This 
method produces a huge package of simultaneous equations in most cases. These 
equations represent relationship between load and displacement. This is the reason 
why this method is suited for matrix calculus and its growth was initiated by the 
development of computers. 
       The FEM model contains finite a number of elements connected at points called 
nodes as shown on Figure 1 
 
 

 
Figure 1 - Meshed model Ω by triangular elements.  

 
       FEM is an extension of Rayleigh-Ritz method, eliminating the difficulty of 
dealing with a large polynomial representing a suitable displacement field valid over 
the entire structure [6]. Cornerstone of this method consists in choosing a 
displacement field over the entire component, usually in the form of a polynomial 
function, and evaluating unknown coefficients of the polynomial for minimum 
potential energy. FEM approach, based on minimum potential energy theorem, 
converges to the correct solution from a higher value as the number of elements in 
the model increase. It gives an approximate solution. That is the reason why we call 
FEM one of the method of approximation [6]. The number of elements used in model 
is selected by the engineer, based on the required accuracy of solution as well as the 
computing power available. This model has an assumed behavior or response of 
each element to the set applied loads, and evaluating the unknown field variable 
(displacement, temperature) at these finite number of nodes. 
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1.3.1 Discrete Elements - 1D 

       A truss structure, as shown on Figure 2, consists of a collection of slender 
elements, called bars. Nodes are chosen at the connection of two or more discrete 
elements, at junction of two different materials, or at a point of load application. We 
call them discrete structures. In the 1-D element, the axial dimension is very large in 
comparison with the cross-section dimensions, and load is assumed to act uniformly 
over the entire cross-section. This clearly reflects that the solution (displacement) is 
taken as a function of x, along the axis of the element. Stress and strain are uniform 
entire the cross-section too. The solution obtained in most of these cases, is exact. 

 

 

 
Figure 2 - Typical truss structure: Forth Rail Bridge (*1890), United Kingdom. 

  
       The only internal forces are those in axial direction. Strains in the element are 
obtained as derivatives of the displacement polynomial, and are thus they are 
expressed in terms of the nodal displacements. Stresses are expressed in terms of 
strains, using the appropriate stress-strain relationship. By equating work done by 
the external forces to the change in internal strain energy of the element and 
applying variational principle, load-displacement relationships of the element in 
terms of stiffness coefficients are obtained. They represent a system of simultaneous 
equations relating the nodal loads to the nodal displacements [6]. 

1.3.2 Continuum Elements - 2D and 3D 

       When one of the cross sectional dimensions, width is significant compared to the 
length of the member while the thickness is very small, it is considered as a 2-D 
element. Displacement variation is therefore neglected across the thickness. This 
means that we neglect the third dimension - the thickness. We consider that the load 
is applied to be acting in the plane of the element, along the X-direction or/and  
Y-direction.  This element has a two degrees of freedom per node - displacement 
along X and Y directions. Load along X-direction produces lateral strain and, hence, a 
displacement uy in the Y-direction ν (because of Poisson's effect). Thus, 
displacements ux and uy are functions of x and y coordinates of the point [9]. 
       In the case of continuum, which is modeled by 2-D respectively 3-D elements, 
there is no unique finite element model for analysis. Each engineer may use a 
particular number of nodes and a particular orientation of elements. That means that 
results provided by FEM obtained by different engineers may be vary. This may be a 
problem. The results obtained by FEM have to be suitably modified for compliance 
with mandatory safety codes. Varying number or type of elements, but at a higher 
computational cost, may improve accuracy. 
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Figure 3 - Examples of continuous meshed models. 

1.3.2.1 Simplex, Complex and Multiplex Elements 

 Finite elements can be classified into three categories.  
 Simplex elements are those obtained by joining n+1 nodes in n-dimensional 

space. Approximating function of displacements consists of only constant 
terms and linear terms, if nodal DOFs include only translational modes [6]. 

 Complex elements are those elements whose displacement function consists of 
quadratics, cubic, or higher order terms. The complex elements may have the 
same shape as a simplex elements but will have additional boundary and, 
sometimes, internal nodes [9]. For example quadratic models like 6-noded 
triangular element and 10-noded tetrahedron element. 

 Multiplex elements are those elements whose boundaries are parallel to the 
coordinate axes and whose displacement function consists of higher order 
terms. For example 4-noded rectangle element (2D) or 8-noded hexahedron 
element (3D). 
 

Examples of the basics elements are shown in Figure 4, classified by their dimension. 

 
Figure 4 - Basics elements used in FEM. 
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1.3.3 Convergence Conditions 

       While we choose a function that represents displacements at any point of the 
element, it should be ensured, that several convergence conditions are satisfied. 
 
 The function should be continuous and differentiable (to obtain e.g. strains) 

within the element.  
 The displacement polynomial should include constant term, representing e.g. 

rigid body displacement in solid mechanics. 
 The polynomial should include linear terms, which on differentiation give 

constant terms.  
 Compatibility of the displacement and its derivatives, up to the required 

order, must be satisfied across inter-element boundaries. Otherwise the 
displacement solution may result in separated or overlapped inter-element 
boundaries when the displacement patterns of deformed elements with a 
common boundary are plotted separately. 

 The polynomial shall satisfy geometric isotropy. 
 
This list of convergence conditions was taken from the book [6]. 

1.3.4 Element Aspect Ratio 

       Certain conditions are generally specified in the standard packages on the sizes 
and included angles for various elements. Aspect ratio is defined for this purpose as 
the ratio of the longest side to the shortest one. It is usually limited to 5, while the 
included angle is usually limited to 45° to 135° for a triangular element and to 60° to 
120° for a quadrilateral or 3-D elements. A few examples of 2-D elements with valid 
and invalid shapes are shown in Figure 5 [6]. 
 

 
Figure 5 - Undesirable and preferred shapes of elements. 
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1.3.5 Limitations of FEM 

       Finite element method is very versatile and powerful and it can enable designers 
to obtain information about the behavior of complicated structures with almost 
arbitrary shape and loading.  In spite of the significant advances that have been made 
during developing the finite element packages, the results obtained must be carefully 
examined before they can be used. The most significant limitation of finite element 
method is that the accuracy of the obtained solution is usually a function of the mesh 
resolution.  Any regions of highly concentrated stress, such as around loading points 
and supports, must be carefully analyzed with the use of a sufficiently refined mesh. 
       Because of singularities and some other phenomena encountered in the 
calculations, the results must be interpreted by a seasoned engineer. Special care 
must be taken to analyze some problems. An additional concern for any user is that 
because current packages can solve so many sophisticated problems, there is a strong 
temptation to "solve" problems without doing the hard work of thinking through 
them and understanding the underlying mechanics or other physical applications.  
       Obtaining solutions using FEM often requires substantial amounts of 
computational cost and time.  Nevertheless, finite element packages have become 
increasingly indispensable to mechanical design and analysis [10]. 

1.3.6 Linearity / Nonlinearity 

       Linear analysis is based on linear relationship between stress and strain or strains 
and displacements. This analysis is used when the stress at any point is below the 
elastics limit and Hooke's law is valid. Results obtained for individual load 
combinations can be summed together, because there is a validity of linear 
superposition.  
       The non-linear analysis may be needed when dealing with the shape or material 
nonlinearity, or there can be some boundary nonlinearities. For example aircraft 
wing with large deflections due to applied loads, belongs to the category of 
geometrical nonlinearity. In solving these problems, geometry of every component 
must be redefined after every load step by adding the displacements at various 
nodes to the nodal coordinates, for defining the true geometry to be used for the next 
load step [11]. 
       From the another point of view, the material may exhibit nonlinear stress-strain 
relationship, such as in case of plasticity or damage. This represents the category of  
material nonlinearity. During the nonlinear analysis, the total load must be applied 
in small steps, in which we assume a linear behavior. The most frequent boundary 
nonlinearities are encountered in contact problems, a typical boundary nonlinear 
problem is supporting by means of Winkler-Pasternak soil model [12]. 
 Consequences of nonlinear structural behavior that have to be recognized are 
[13]: 
 The principle of superposition cannot be applied. Therefore, the results of 

several load cases cannot be combined, and cannot be scaled. 
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 The history of loading is important. Especially, in case of plastic behavior of 
the material. This is accomplished by dividing loads into small increments in 
nonlinear FE analysis. 

 The structural behavior can be significantly non-proportional to the applied 
load. 

 The initial state of stress (e.g. in concrete - residual stresses from shrinkage or 
in metals - residual stresses due to welding) may be important. 

1.3.6.1  Concept of Time Curves 

       As stated above, in nonlinear static analysis, the loads are applied in incremental 
steps using time curves. The "time" doesn't mean real time, but represents pseudo 
time, which denotes the intensity of the applied loads at certain step.  
       Discretized weak form of the governing equations for linear task is 

 
    (1.01) 
 

where K is the stiffness matrix, d is the displacement matrix vector1, and fext vector of 
nodal loads representing from the surface and volume forces. We can rewrite 
equation (1.01) as 
 

     (1.02) 
 

where fint is the vector of nodal forces equivalent stress acting in the elements. If the 
solved problem contains some structural nonlinearity, then the relationship between 
global vectors of nodal forces and nodal displacements is nonlinear: 

 
                                                     (1.03) 
 

       The task can be solved separately for individual time (load) steps. Assume that 
the solution in step t is known, for example from the previous calculation. After 
incremental change of load we can write 

 
     (1.04) 
 

 

        Vector extext ff   is known, while the increment of displacements d needs to be 

calculated to meet (at least approximately) governing equations (1.04). Because of the 
non-linear relationship between fint and fext(d) the vector of internal forces fint cannot 
be generally found analytically. There have been developed several numerical 
method to solve these problems: 
 Solutions without an incremental iterations (Euler method). 
 Iterative solution based on the Newton-Raphson method. 
 Other iterative methods, such as BFGS (Broyden-Fletcher-Goldfarb-Shann). 

                                                 
1 Here the vector has no physical meaning with respect to coordinate system, but it is just an array of 
values in individual nodes. 

extfKd 

extff int

extint )( fdf 

extextint )( ffddf 
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       In our calculations, the Newton-Raphson method was used, for more details see 
the following sections. 

1.3.6.2  Full Newton-Raphson Method 

       Newton-Raphson (NR) method, sometimes called tangent method, is an iterative 
numerical method used for solving the systems of nonlinear equations.  
NR method is referred to as the method of the tangents, because the solution of the 
equation f(x) = 0 is sought in the direction of the tangent function f(x). Using the 
incremental step-by-step analysis. Knowing that we can rewrite (1.04) as a 

 
                                              (1.05) 
 

where K(d) is the stiffness matrix, relating the loading increments to the increments 
of deformation, and d are the initial deformations, obtained the previous step.  
The right side of the of the equation (1.05) represents out-of-balance forces due to the 
load increment, i.e. total load level after applying the load increment minus forces at 
the end of the previous load step. General rule is that the stiffness matrix K is 
deformation depended as a function of d, but it is usually ignored within a load 
increment to preserve the linearity. In our case, the stiffness matrix is calculated 
based on the value of d related to the level before the load increment.  
The nonlinearity of equation (1.05) introduces a nonlinearity of internal forces: 
 

 )()( intint dfdf           (1.06) 

 
where  is an arbitrary constant, and the non-linearity can be also illustrated on the 
stiffness matrix, because 
 )Δ()( ddKdK      (1.07) 

 
We can rewrite (1.05) for the i-th iteration 
 

  )()Δ( 1iintexti1i   dffddK    (1.08) 

 
all (K(di-1) and fint(di-1) have already been calculated during the previous step, and 
we solve for di at load level fext using 

 
  (1.09) 
 

 
One step of NR method is illustrated in Figure 6. 

 
 

)()Δ( intext dffddK 

iii ddd  1
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Figure 6 - Illustration of one step in Newton-Raphson method [11]. 

 
 
       It is important to note that the stiffness matrix K is updated in each iteration. This 
results in a rapid convergence, requiring less iterations. 
       An issue are the convergence criteria, i.e. the criteria for terminating the iteration 
cycles. That means that we need to define the conditions under which we can 
consider the approximate solutions for sufficiently close to equilibrium. There are 
three major criterions: 

1. Criterion of increment displacements 
2. Energy criterion 
3. Criterion of unbalanced residues 

The 1st criterion is most commonly used in FEM packages and it is defined as: 
 

 
     
     (1.10) 
 
 

where εD is called the convergence tolerance. It's a norm of displacement vector 
increment during iteration and it's small enough in comparison  with the norm of 
vector total displacement at the end of the iteration [14]. 

Dtt

i

d

d






2

2

)(
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2 Summary of the Theory of Elasticity 

       Displacement, strain and stress fields are cornerstones of the governing 
equations of elasticity. For the first they are valid if the structure undergoes small 
deformations only. Second condition is the linearity elastic manner of the material. 
Overall scheme of the system can be found on the Figure 7. 

 

 
Figure 7 - Diagram of the kinematics and static equations. 

2.1 Strain-to-Displacement Relations 

2.1.1 Displacements 

       A displacement field is an assignment of displacement vectors for all points in a 
region or body that is displaced, or deformed, from one state to another. The 
displacements at each point is described by three components (u1, u2, u3), all of them 
dependent on the position in the Cartesian coordinate system (x1, x2, x3). In a matrix, 
the displacement vector can be written as      
 

  T321 ,, uuuu   (2.01)  

                        
where individual components of u are functions of spatial coordinates i.e. 
 

          (2.02) 
 

 

 321 ,, xxxuu ii 
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2.1.2 Strains 

       In the following sections the attention will be focused on 2D problems only, but 
the transition to 3D problem is usually analogous and can be found in literature. 
Strain is a normalized measure of deformation representing the displacement 
between particles in the body relative to a reference length. In the infinitesimal strain 
(also called engineering strain) theory the stretching in the x-direction can be seen as 
the differential displacement per unit length. The x-component of strain is 

 
                                    (2.03) 
 
 

and it can be understood as a displacement gradient.  
       The engineering shear strain, or the change between two originally orthogonal 
lines is defined as 

 
                      (2.04)                  
                           
 

       For the other components of strain tensor (ε22, ε21) the relationship between strain 

and displacement can be expressed analogously, yielding  
 

 
 
 
                     (2.05)                               
 

 

2.2 Static Equations 

       Determining the variation of the stress components as functions of position 
within the interior of a body is obviously a principal goal in the stress analysis. The 
force equilibrium on an infinitesimal square results in the following Cauchy’s 
equations: 

 
 
 
 
         (2.06) 
 

                   
 Based on the moment equilibrium on the infinitesimal square, we obtain: 
 

                      (2.07) 
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Due to this fact the stress tensor is also symmetric. 
       Equilibrium of the stress and surface traction can be expressed by Cauchy’s 
formula 
 

 
                           (2.08) 
  

where is a t traction vector, ∆F external force and ∆A is the magnitude of the area on 
which ∆F acts. Traction is a vector of the forces per area applied at the body surface 
and it is completely defined by two components (in 2-D) vectors associated with the 
coordinate planes. 
       Generally, for an arbitrary normal plane n it holds that 

 
                                               (2.09) 
 

which can be written in a compact form as: 
 

    (2.10) 
 

and in the index notation as: 
 

 (2.11) 
 

where ni  is a multiple of the cosine angle between the investigated plane and 
coordinate system (it is a projection onto the coordinate axes). 

2.3 Constitutive Equations 

       Previous two sections were dealing with the kinematics (geometry) and static 
equilibrium of the body. When deriving the geometric equations it was assumed that 
the body is a continuum. This assumption is purely geometrical and does not 
provide anything about the role of material itself. In order to formulate the 
relationship between stress and strain tensors i.e. to develop the constitutive 
equations – we also assume that the material is homogenous and isotropic. Generally 
applied load in the 2D model we describe a stress-state by the three independent 
components of stress tensor related to the three components of the strain tensor, for 
convenience arranged in a column array as follows: 
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       Sorting components of stress and strain is equivalent to each other and their dot 
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   (2.13) 
 

has the meaning of the work done by the stress on deformations. In the linear theory 
of elasticity and assuming the material isotropy the relationship between stress and 
strains can be expressed by means of two independent constants, e.g. Young’s 

modulus E and Poisson’s  ratio ν. Other constant, such as shear modulus G, can be 

expressed with previous two as follows 
 

 
(2.14) 

 
 
      The stresses and strains inside a continuous isotropic body are connected by a 
linear relationship also known as the Hooke's law. Basics expression for uniaxial 
stress is  

 
  (2.15) 

 
       In two dimensions, it is useful to utilize the symmetry of stress and stress tensors, 
and to exploit the arrangement of the components to the column arrays (Voigt-
Mandel notation). The stress-strain relationship can be then expressed as 

 
 

(2.16) 
 
 

 
where D is the stiffness matrix described in the following section. 
       In two dimensional, sometimes called as plane theory of elasticity, we 
distinguish the following two general types of analysis: plane-stress and plane-strain, 
explained in the following sections. 
  

2.3.1 Principal Stresses 

       When the coordinate system changes, the stress and strain components are 
changed too.  That is the reason why there is an important role of invariants of 
stresses.  Invariants of stress are suitably defined variables being independent on the 
coordinate system. These are called principal stresses and they are calculated for 
plane-stress problems as the roots of the following characteristic equation 

 
 

(2.17) 
 

yielding 
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Similar way leads to obtaining the main invariants of strain tensor. 

2.3.2 Plane-Stress 

       Plane-stress is defined to be a state of stress in which the normal stress, 33 , and 

the shear stresses, 13  and 23 , directed perpendicular to the investigated  plane are 

assumed to be zero. The geometry of the body is essentially that of a plate with one 
dimension much smaller than the others and the loads are applied uniformly over 
the thickness of the plate and act in the plane of the plate. The plane-stress condition 
is frequently encouraged in practice.  
       For isotropic materials and assuming  
 

 (2.19) 
 

and 
 
 (2.20) 

yields 
 

                                                           (2.21) 
 
where 
 

 
 

(2.22) 
 
 
 

is the material stiffness matrix. Similarly the dependence of strains on the stress can 
be expressed by the inversion of the previous equations, obtaining: 
 

 (2.23) 
 

where 
 (2.24) 

 
we can obtain the non-zero out-of-plane deformation as 
 

  
  (2.25) 
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2.3.3 Plane-Strain 

       Plane-strain is defined to be a state of strain in which the strain normal to the 

investigated plane, 33 , and the shear strains 13  and 23  are assumed to be zero. 

       For isotropic materials and assuming  
 

        (2.26) 
 

and 
  (2.27) 

  
 

                                                       (2.28) 
  

where  
 

 
                              (2.29) 

 
 
 

 
and the out-of-plane stress can be then calculated as 
 

 
(2.30) 
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3 Damage Model 

      Instead of the words elasticity, plasticity or fracture, which are used in real life 
with the same consequences like in mechanics. Usage of the word damage is very 
wide. In this text, we will focus to specify damage in narrow sense like a reduction of 
the internal integrity of a material caused by the creation, dissemination small cracks, 
voids and similar defects.  

3.1 Isotropic Damage Model 

       A simple class of isotropic damage model is based on the stress-strain equation in 
the form [15] 

 
 (3.01) 

 
where ω is a scalar damage variable, representing the rate of damage and evolving 
from 0 for the undamaged material and 1 for fully damaged material. Let assume 
new variable, called equivalent strain, ~ , that depends on the strains ε. The 
maximum level of equivalent strain plays the role of internal variable, denoted as κ, 
representative maximum level of strain achieved during the “life” of material till the 
present t 

 
   (3.02) 

 
where t´ running through the all times before the time t. 
       Course of the damage can be characterized as so-called damage law meantime 
understood as a dependency of damage parameter on deformation, which we can 
write as 

                                                       (3.03) 
 

where g is an function that is closely connected with the shape of stress-strain 
diagram. κ is formally described by the loading-unloading functions 

 
(3.04) 

 
with the damage loading function defined as 

 
                                               (3.05) 

 

      For example, setting ~ equal to the norm of the strain tensor, ε , we obtain a 

model with the same behaviour in tension and in compression, which is not suitable 
for quasi brittle materials with damage due to cracking. 
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      A most popular formula for equivalent strain, proposed by Mazars, is based on 
the norm of the positive part of the strain tensor 

 
 

                              (3.06) 
   

 

where I with I=1,2,3, are the principal strains and their calculation was shown in 

previous section.  

3.2 Material Softening 

       Many materials exhibits, when a certain measure of strain rate exceeds an elastic 
threshold, the process of softening. It means that with an increasing deformation 
stress decreases, which progressive softening is characteristic especially for quasi-
brittle materials such as concrete. Softening curves of quasi-brittle materials  
are usually characterized by a relatively steep descent after the peak and by a long 
tail. In brittle materials there is present sudden crack growth, so the stress disappears 
almost immediately.  

3.2.1 Linear Softening 

       For explanation, let us assume simple model as shown in Figure 8, where the 
stress-strain diagram is composed of two linear curves. One curve represents elastics 
behavior and the second one linear softening. Material is elastics till the limit strain, 
denoted as 0, is reached. Stress transmitted by material completely disappears at 
ultimate strain, denoted f. 

 

 
Figure 8 - Stress-strain diagram with linear softening (left) and the corresponding dependence of 

damage on strain (right). 
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0for  

0for  

3.2.2 Exponential Softening 

       When the equivalent strain, such as Mazars norm [17], exceeds the elastic limit, 
the microcracking occurs and the softening takes place. This is advancing if any new 
maximum of the equivalent strain reached. The maxima are stored in the internal 
variable Kappa, κ, meaning "historically the maximum reached value of equivalent 
strain at a given point". The softening part of the stress-strain diagram can be 
approximated by a non-linear law, or by a bilinear softening law with a low knee 
point [15].  
       Let us consider a simple damage law characterized by an exponential softening 
(Figure 9) 

 
 
 

       (3.08) 
 

 
where ε0 is the limit elastic strain (Hooke’s  law validity) up to the peak, followed by 

exponential softenin, when 0  . The stress transmitted by the material can be 

expressed as a function of strain as follows  
 

 
 
  (3.09) 

 
 

 
where parameter f controls the slope of softening diagram, as shown in Figure 9. 
 
 

 
Figure 9 - Stress-strain diagram with exponential softening (left) and the corresponding 

dependence of damage on strain (right). 
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       The area under the stress-strain diagram, defined as 

 
 

(3.10) 
 

and represents the energy dissipated per unit volume at complete failure. It is closely 
related to the fracture energy of the material Gf. For a continuum damage model with 
damage localized into a band of width hb, we obtain 

 
(3.11) 

 

3.2.3 Damage Localization 

       In numerical calculations, when utilizing the softening law, the results exhibit a 
pathological sensitivity to discretization parameters such as the element size in the 
simulation. It is well known that softening can induce localization of inelastic 
processes into zones arbitrary small thickness. This is rendered by using the "global 
criteria" defining the fracturing threshold, such as maximum cohesive crack 
thickness, fracture energy, or using the non-local formulation of the damage laws 
[17]. 
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4 Calculations 

       The purpose of FEA was simulation of performed experiments, it should has just 
indicate the trends and show the failure mechanism. This approach is much more 
time and cost efficient compared to an old fashioned purely experimental analysis. 
The simulations were focused on the investigation of aggregate shape, size and 
material influence on the bending strength evaluated from three-point bending tests, 
and fracture-mechanical properties evaluated from a series of splitting tests.  

4.1 Steps of Calculation 

 
       The modern commercial package enable to perform all steps of FE modeling such 
as model preparation, meshing, setting of boundary conditions, calculating and 
displaying results. Free academic packages are often focused on a single issue, but 
compared to the commercial ones they provide very efficient and advanced 
functions. Therefore, different software packages are often used for individual steps. 
In our case, the FE modeling was accomplished in the following steps: 

 

 geometry preparation using MATLAB  

 meshing in ANSYS 

 FE calculation by OOFEM 

 plotting stress-strain diagrams in MATLAB 

 postprocessing and featuring the graphical outputs in PARAVIEW  

4.2 Geometry of Tested Specimens 

       The geometry of tested specimens is specified by Figure 10 and 11. 
 
 

 
Figure 10 – Geometry of tested specimen – bending test. 
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       The aggregates of round, ellipsoidal and angular shape were placed only in the 
area of expected crack propagation, area is labeled as II, in a relative volume  
cagg = 0.4. Each aggregate shape configuration was represented by the fine (F) (passing  
 

 
Figure 11 – Geometry of tested specimen – splitting test. 

 
the sieve opening d0 = 1.0 mm) and coarse (C) (d0 = 2.5 mm) monodisperse particles. 
The individual aggregate configurations are summarized in the Table 1. 

 
Table 1 – Summary of simulated aggregate configurations 

 code shorter semi-axis [mm] longer semi-axis[mm] 

angular coarse aggregates A(C) 2.5 5 
angular fine aggregates A(F) 1 2 

ellipsoid coarse aggregates E(C) 2.5 5 
ellipsoid fine aggregates E(F) 1 2 
round coarse aggregates R(C) 2.5 2.5 

round fine aggregates R(F) 1 1 

 
       The procedure of the geometry generation was implemented in MATLAB 
software and the MPT toolbox for MATLAB [16] was used for the generation of the 
aggregates.  
       For meshing triangular elements were used. The conforming finite element mesh 
was generated with the ANSYS software. Mesh density was coarse near the supports 
and greatly refined in the expected area of crack propagation. Examples of the fine-
meshed area during the bending test and meshed model for splitting test are shown 
in Figure 12. 
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 Figure 12 – Meshed model for splitting test (left) and mesh in middle part for bending test (right). 

4.2.1 Principles Used for Generation of Aggregates 

       Aggregates were generated with random orientation and distribution using the 
toolbox for MATLAB [16]. The randomness ensured the statistical validity of 
obtained results. On the other hand, positioning was restricted by following 
conditions:  

 

 aggregates cannot cross the specimen boundaries (i.e. modeled as if cast, 
non-periodic boundary) 

 the notch could not be entirely blocked by the bridging aggregate 
(Figure 13) 
 

 

 
Figure 13 – Bad distribution of aggregates around notch (left), satisfying distribution of aggregates 

around notch (right)   

4.3 Finite Element Calculation 

       The plane-stress numerical simulations were carried out in the OOFEM finite 
element code with the object oriented architecture [7]. An isotropic damage model 
with linear softening [17] was assumed for the matrix phase, while the aggregates 
were modeled as isotropic and elastic. The equivalent strain, ~ , was determined 
based on Mazars norm (Equ. 3.05), accounting only for the positive part of the strain 
tensor. The interfacial transition zone was not modeled. The material properties of 
the matrix and aggregates are summarized in the Table 2. The input parameters 
were: Young’s modulus, E, Poisson’s ratio, ν, and in case of matrix also strain at peak 
stress ε0 and crack opening at complete failure wf. In order to avoid damage around 
nodes with controlled displacement, the loaded and supported areas were also 
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modeled as isotropic elastic material, having the stiffness of the homogenized 
material (denoted “homogenized regions” in Table 2; 1-for bending and splitting test 
with sand aggregates, 2-bending test with bricks aggregates) characterized by elastic 
constants obtained using Mori-Tanaka scheme [18, 19]. 

 
Table 2 – Material properties of individual phases. 

 E [GPa] ν [-] 0 [-] wf [μm] notes 

matrix 3,2 0.2 0.0004 1 brittle material, linear softening 

sand aggregates 60 0.2 ∞ ∞ elastic material 

brick  aggregates 8 0.2 0.000425 1 elastic material 

homogenized regions 1 9 0.2 ∞ ∞ elastic material 

homogenized regions 2 4,5 0.2 ∞ ∞ elastic material 

 
       The matrix phase was represented by a brittle lime-based paste and its properties 
were determined from experiments [20], while the properties of aggregates were 
determined based on the literature study [21, 22]. 

4.3.1 Summary of Tested Specimens 

       Six random distribution per each of six aggregate shape and size configurations 
were generated. The samples with crushed brick aggregate, which was assumed to 
be angular, are denoted as "br". The studied configurations are summarized in  
Table 3. 
 

           Table 3 – Summary of tested aggregate configurations. 

BENDING SPLITTING 

A(C) A(C,br) A(C) A(C,br) 
A(F) A(F,br) A(F) A(F,br) 
R(C)  R(C)  
R(F)  R(F)  
E(C)  E(C)  
E(F)  E(F)  
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4.4 Stress-strain Diagrams 

       Stress-strain diagrams for each configuration have been made as averaged stress-
strain diagrams of all six tested specimens. Averaged values were Young’s modulus 
E, tensile strength ft  and for splitting test, where the softening part of the diagram 
was approximated with an exponential function, also the averaged fracture energy Gf  
was used to find an equivalent average diagram.  Because of the unstable crack 
propagation and presence a snapback2 phenomenon, the bending test could not be 
used for the evaluation of fracture energy. Some examples of diagrams are shown in 
Figure 13 ,14 and 15. 

 
 

 
Figure 13 – Averaged stress-strain diagram for splitting test A(F). 

 
 
 
 
 
 
                                                 
2 For extremely brittle materials, the snapback in the equilibrium path occurs and the  
load-displacement softening branch assumes a positive slope. Both load and displacement must 
decrease to obtain slow and controlled crack propagation (whereas in normal softening only the load 
must decrease). If the loading process is displacement-controlled, the loading capacity presents a 
discontinuity with a negative jump. It is caused by catastrophic decrease of stiffness at initialization of 
crack propagation process [23, 24]. 
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Figure 14 – Averaged stress-strain diagram for splitting test A(F, br). 

 
 

 
Figure 15 – Averaged stress-strain diagram for bending test R(C). 
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4.5 Postprocessing 

       Postprocessing, and graphical illustration of outputs such as crack propagation, 
stress, strain or displacement were carried out using PARAVIEW software [25]. Some 
examples of graphical outputs are shown in Figure 16 and 17. 

 

 
Figure 16 – Crack propagation during bending test A(C, br)_5. 

 
 

      
Figure 17 – Crack propagation during  splitting test E(F)_6. 
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5 Results and Discussion 

5.1 Bending Test 

       Results of bending tests were averaged within the individual configurations, 
providing a smooth force-displacement diagram. Resulting comparison providing 
information about the aggregate shape influence on mortar bending strength is 
shown in Figure 18.  

 
 

 
Figure 18 – Averaged load-displacement diagrams for individual aggregate configurations. 

 
       The stress concentrations due to presence of angular particles resulted in a lower 
resistance of the specimens in three-point bending tests, which was even more 
pronounced in case of beams containing coarse particles. On the other hand, the fine 
round particles resulted in the highest bending strength. The stiffness of the 
specimens was not significantly influenced by the shape of the particles and the 
slight deviations were caused by the variable arrangement of the the particles within 
the sample. 
       In Figure 19 the influence of crushed brick aggregates on the mortar mechanical 
properties is demonstrated. The results clearly indicate that the use of crushed bricks 
particles increases the ductility of tested specimens. The fracture energy of the 
mortars containing crushed brick particles, determined from the three-point bending 
test, was also increased, compared to the mortars containing sand. 
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Figure 19 – Averaged load-displacement diagrams for angular configuration of sand and brick 

aggregates. 

 
 

       In Table 4, the numerical values obtained during the bending test, in particular 
maximum force Fmax, corresponding maximum displacement at uy,max are 
summarized. 

 
 
       Table 4 – Results of three-point bending test simulations. 

codename Fmax [N] uy,max [x 10-8 m] 

A(C) 81.9 1.24 
A(C,br) 100.8 2.76 

A(F) 89.0 1.29 
A(F,br) 94.1 2.52 

E(C) 90.9 1.38 
E(F) 94.7 1.42 
R(C) 88.1 1.35 
R(F) 96.1 1.44 
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5.2 Splitting Test 

       Results of splitting tests were averaged within the individual configurations, 
providing a smooth force-displacement diagram. Result comparison of aggregate 
shape influence is shown in Figure 20. The softening part had to obey the mean value 
of the energy dissipated during the simulations, and it was approximated by a 
exponential curve. 

 
 

 
Figure 20 – Averaged load-displacement diagrams for individual aggregate configurations. 

 
 

       The opposite trends were observed in splitting than in bending simulations, 
where the coarse angular aggregates contributed to higher fracture energy of the 
mortar, while the round aggregates enabled relatively easy crack propagation 
through the specimens. Material influence of brick particles is demonstrated in 
Figure 21. The results indicate the same trend, which was observed in the bending 
test, that the elastic deformation of mortars containing crushed brick particles is 
increased.  
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Figure 21 – Averaged load-displacement diagrams for angular configuration of sand and brick 

aggregates. 

 
       In Table 5 are summarized numerical values obtained during the splitting test. 
Values are: maximum force Fmax, corresponding maximum displacement at Fmax and 
value of work that is needed to fracture the beam, Gf, called fracture energy. 
 
Table 5 – Results of three-point bending test simulations. 

codename Fmax [N] uy,max [x 10-9 m] Gf [x 10-7 J] 

A(C) 73.6 9.74 6.43 
A(C,br) 54.8 9.33 5.26 

A(F) 70.7 8.76 5.36 
A(F,br) 56.6 9.56 5.83 

E(C) 62.3 7.63 5.25 
E(F) 54.5 8.21 5.04 
R(C) 62.1 8.11 4.74 
R(F) 61.9 7.43 4.56 

 



RESULTS AND DISCUSSION   43 
 

Conclusion 

       The present work was focused on the influence of aggregates embedded in the 
brittle matrix, represented by the isotropic damage model with linear softening. In 
particular, the bending strength and fracture-mechanical properties were evaluated 
from the finite element simulations of bending and splitting tests. The following 
conclusions can be made from the results of the analysis: 

 

 2D plane-stress finite element simulations and isotropic damage model 
can successfully simulate the crack propagation through a 
microstructure in a realistic way, 
 

 simulation of splitting test can be used for the evaluation of fracture 
energy in brittle materials without snap-back response in load-
displacement diagram, 

 

 the bending strength is enhanced by the addition of fine spherical sand 
particles into mortars, since they do not introduce excessive stress 
concentrations around their tips, 

 

 the fracture energy of mortars can be enhanced by the addition of 
coarse angular aggregates, since these create an efficient obstacle 
against the crack propagation, 

 

 the maximum elastics strain of mortars containing crushed bricks is 
much higher compared to those containing sand aggregates only, 

 

 the stress concentration near the brick aggregates boundaries are 
reduced and the crack is often forced to pass through  the crushed brick 
particle which results in an additional energy dissipation. 

 
       The study was not supposed to yield exact values, it only revealed the trends. 
Three-dimensional model, incorporating shrinkage micro-cracking and interfacial 
zone around aggregates, would probably give more accurate data at significantly 
higher computational cost. 
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